
Comments in C

• Comments in C language are used to provide information about
lines of code. It is widely used for documenting code. There are 2
types of comments in the C language.

Single Line Comments

• Single line comments are represented by double slash \\. Let's 
see an example of a single line comment in C.

#include<stdio.h>

int main()

{

//printing information

printf("Hello C");

return 0;

}



• Mult Line Comments

• Multi-Line comments are represented by slash asterisk /* ... */. It
can occupy many lines of code, but it can't be nested. Syntax:

/*

code

to be commented

*/

Example:

#include<stdio.h>

int main()

{

/*printing information

Multi-Line Comment*/

printf("Hello C");

return 0;

}



C Format Specifier

• The Format specifier is a string used in the formatted input and
output functions. The format string determines the format of the
input and output. The format string always starts with a '%'
character.

• The commonly used format specifiers in printf() function are:

Format specifier Description

%d or %i It is used to print the signed integer value where 
signed integer means that the variable can hold 
both positive and negative values.

%u It is used to print the unsigned integer value 
where the unsigned integer means that the 
variable can hold only positive value.

%o It is used to print the octal unsigned integer 
where octal integer value always starts with a 0 
value.

%x It is used to print the hexadecimal unsigned 
integer where the hexadecimal integer value 
always starts with a 0x value. In this, 
alphabetical characters are printed in small 
letters such as a, b, c, etc.



%X It is used to print the hexadecimal unsigned 
integer, but %X prints the alphabetical 
characters in uppercase such as A, B, C, etc.

%f It is used for printing the decimal floating-point 
values. By default, it prints the 6 values after '.'.

%e/%E It is used for scientific notation. It is also known 
as Mantissa or Exponent.

%g It is used to print the decimal floating-point 
values, and it uses the fixed precision, i.e., the 
value after the decimal in input would be exactly 
the same as the value in the output.

%p It is used to print the address in a hexadecimal 
form.

%c It is used to print the unsigned character.

%s It is used to print the strings.

%ld It is used to print the long-signed integer value.



Example

int main()

{

int b=6;

int c=8;

printf("Value of b is:%d", b);

printf("\nValue of c is:%d",c);

return 0;

}

In the above code, we are printing the integer value of b and c by 
using the %d specifier.



Compilation Process in C

• The compilation is a process of converting the source code into
object code. It is done with the help of the compiler.

• The compiler checks the source code for the syntactical or
structural errors, and if the source code is error-free, then it
generates the object code.

• The c compilation process converts the source code taken as input
into the object code or machine code.

• The compilation process can be divided into four steps, i.e., Pre-
processing, Compiling, Assembling, and Linking





Preprocessor

• The preprocessor takes the source code as an input, and it removes all
the comments from the source code.

• The preprocessor takes the preprocessor directive and interprets it. For
example, if <stdio.h>, the directive is available in the program, then the
preprocessor interprets the directive and replace this directive with the
content of the 'stdio.h' file.

• The source code is the code which is written in a text editor and the
source code file is given an extension ".c".

• This source code is first passed to the preprocessor, and then the
preprocessor expands this code. After expanding the code, the expanded
code is passed to the compiler.

Compiler

• The code which is expanded by the preprocessor is passed to the
compiler. The compiler converts this code into assembly code. Or we can
say that the C compiler converts the pre-processed code into assembly
code.



Assembler

• The assembly code is converted into object code by using an assembler

• The name of the object file generated by the assembler is the same as
the source file.

• The extension of the object file in DOS is '.obj,' and in UNIX, the
extension is 'o'.

• If the name of the source file is 'hello.c', then the name of the object
file would be 'hello.obj'.

Linker

• Mainly, all the programs written in C use library functions. The main
working of the linker is to combine the object code of library files with
the object code of our program.

• The output of the linker is the executable file. The name of the
executable file is the same as the source file but differs only in their
extensions.

• In DOS, the extension of the executable file is '.exe', and in UNIX, the
executable file can be named as 'a.out'.


